
Unlimited Staging Environments 
with Kubernetes

David Huie
Infrastructure Engineer

Dollar Shave Club



Technology
● 30+ applications
● Ruby, Rails, Node, Go, and Elixir apps
● 3000 containers
● Four different environments



QA Environments
● Short-lived environments
● Contain entire DSC stack
● Use custom versions of all projects
● Used for demos, manual QA, and integration tests



Static QA Environments
● Complete DSC stack on a single machine 

managed by Ansible
● 10 different EC2 instances
● Developers had to reserve time on each 

machine
● This system scaled from a handful of 

engineers to about 30
● 10 servers bottlenecked team



Dynamic QA Design
● Support arbitrary number of environments
● Build off of Github pull requests
● Match branches across repositories
● Recycle CoreOS/Docker container platform 

used on production



Acyl
● Go application
● Orchestrates creating a new QA 

environment





Issues
● Difficult to configure & templatize with cloudinit
● Environment boot time was slow
● Debugging had to be done via SSH
● Slow iteration speed during development





Kubernetes
● "Container orchestration system"
● Open-source project by Google inspired by 

their internal system, "Borg"
● A way to run Docker containers on top of a 

cluster of servers
● Similar systems: Docker Swarm, Apache 

Mesos, Hashicorp Nomad



Useful Features
● Container bin packing
● “Controllers”
● Service discovery
● Docker image caching
● Granular API 
● minikube
● kubectl



Helm
● Manages packages of Kubernetes resources, “charts”
● Offers templating
● Can validate packages by linting or performing a dry run
● A package can be compiled for different releases or environments
● Offers lifecycle management
● Packages can be developed and tested locally with minikube





Amino
● New deployment backend for Acyl
● Most configuration is written as a Helm 

chart
● It offers an environment CRUD API
● Configuration is stored in Github and 

fetched when an environment is created









Stats
● 1 monolithic QA environment with every digital product service
● 44 Kubernetes pods per environment
● Environment creation takes ~10 minutes
● All environments run on one 38 node Kubernetes cluster (8 CPU, 61GB RAM 

instances)
● Max capacity of ~80 environments



Limitations
● Kubernetes cluster runs 24/7
● QA environment capacity is fixed
● Occasionally run into Docker/Kubernetes scalability issues and bugs



The Aftermath
● Environments can now integration tests 

that span all microservices
● QA team can manually test essentially 

unlimited (~80) concurrent environments at 
once

● Kubernetes evaluation was a success
● Fewer bugs transitioning between 

environments due to shared Helm charts 
and platform (Kubernetes)



Future Work
● Open source all services
● Use Kubernetes Ingress



We’re hiring
https://jobs.jobvite.com/dollarshaveclub

david.huie@dollarshaveclub.com



Questions?


